Acta Cryst. (1998). C54, 180-181

Trichloro(4,4'-dimethyl-2,2'-bipyridineN, N^{\prime})manganese(III) Acetonitrile Solvate (1/1)

Khall A. Abboud, Brian H. Ward and Daniel R. Talham
Department of Chemistry, University of Florida, PO Box 117200, Gainesville, Florida 32611-7200, USA. E-mail: abboud@chem.ufl.edu

(Received II July 1997; accepted 22 September 1997)

Abstract

The structure of the title compound, $\left[\mathrm{MnCl}_{3}\left(\mathrm{C}_{12} \mathrm{H}_{12}-\right.\right.$ $\left.\left.\mathrm{N}_{2}\right)\right] . \mathrm{CH}_{3} \mathrm{CN}$, consists of monomeric manganese(III) species with distorted trigonal bipyramidal geometry; $\mathrm{Mn}-\mathrm{N}_{\mathrm{ax}} 2.035$ (1), $\mathrm{Mn}-\mathrm{N}_{\mathrm{eq}} 2.096$ (1), $\mathrm{Mn}-\mathrm{Cl}_{\mathrm{gx}}$ 2.2187 (5), and $\mathrm{Mn}-\mathrm{Cl}_{\mathrm{eq}} 2.2587$ (5) and 2.3117 (5) A. The Mn complexes stack as pairs in columns along the a axis, separated by columns of acetonitrile. Spacing between the Mn^{111} atoms is not uniform and alternating distances of $6.704(1)(-x,-y,-z)$ and $7.713(1) \AA$ ($1-x,-y,-z$) are observed.

Comment

Recently, physicists have been interested in studying the magnetic properties of integer-spin (S) linear-chain Heisenberg antiferromagnets in comparison with those of non-integer-spin systems. These studies led to evidence of an energy gap in $S=1$ linear-chain systems (Katsumata et al., 1989; Katsumata, 1995; Ajiro et al., 1989). The $S=2$ linear-chain Heisenberg antiferromagnet ($2,2^{\prime}$-bipyridine)trichloromanganese(III) (Perlepes et al., 1991) has been studied and the experimental results show evidence of an energy gap at low temperatures (Granroth et al., 1996). An attempt to synthesize the $4,4^{\prime}$-dimethyl derivative of ($2,2^{\prime}$-bipyridine)trichloromanganese(III), i.e. (1), was successful and its crystal structure was determined and is presented here.

(1)

Complex (1) is monomeric and contains an $\mathrm{Mn}^{\mathrm{III}}$ ion in a five-coordinate environment. $\mathrm{Mn}^{\text {III }}$ complexes are generally octahedral but (1) has the Mn atom in a distorted trigonal-bipyramidal coordination arrangement where the bidentate ligand occupies one axial and one equatorial position. The equatorial angles deviate
significantly from the ideal value of 120° but their sum is $358.56(4)^{\circ}$, while the axial angle deviates from the ideal 180° in order to accommodate the bidentate ligand. The geometry requirement of the bidentate ligand is manifested in a large deviation of the angle $\mathrm{Nl}-\mathrm{Mn}-$ N12 [77.95(6) ${ }^{\circ}$] from the ideal value. The rest of the axial-equatorial angles are close to 90°, with the exception of $\mathrm{Cl} 2-\mathrm{Mn}-\mathrm{Cl} 3$ [97.28 (2) ${ }^{\circ}$]. The $\mathrm{Mn}-\mathrm{N}$ distances are slightly longer than their counterparts in manganese(III)-porphyrin complexes, which lie in the range 1.963-2.072 A (Balch et al., 1994; Arasasingham et al., 1987; Tulinsky \& Chen, 1977; Day et al., 1974). The two axial bonds to Nl and Cl 2 are shorter than similar bonds in the equatorial plane. The $\mathrm{Mn}^{\text {III }}$ ion is a d^{4} system with the $d_{x^{2}-y^{2}}$ orbital containing one electron while $d_{z^{2}}$ is empty. Shortening of the axial bonds along the \mathbf{z} direction is observed as a result of lower electronic shielding, similar to a Jahn-Teller effect.

The Mn complexes pack as pairs in columns along the a axis, with the aromatic ring planes parallel to each other due to inversion symmetry. The separation between adjacent complexes is not uniform: the distance between the aromatic ring planes within a pair is 3.528 (1) $\AA(-x,-y,-z)$ and the distance between pairs is $3.630(1) \AA(1-x,-y,-z)$. Larger separations are observed between the Mn atoms: distances within and between pairs are $6.704(1)(-x,-y,-z)$ and 7.713 (1) $\AA(1-x,-y,-z)$, respectively. A similar packing motif is observed for the solvent molecules: pairs of acetonitrile molecules (related by inversion symmetry) are arranged in columns along the a axis and fill voids in the crystal lattice.

Fig. 1. The molecular structure of complex (1), with 50% probability ellipsoids, showing the atom-numbering scheme.

Experimental

The title compound was prepared using the method outlined by Perlepes et al. (1991), except that $4,4^{\prime}$-dimethyl-2,2'-bipyridine was used instead of $2,2^{\prime}$-bipyridine. Dark-blue needles were obtained by slow evaporation from the reaction solution.

Crystal data
$\left[\mathrm{MnCl}_{3}\left(\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{~N}_{2}\right)\right] . \mathrm{C}_{2} \mathrm{H}_{3} \mathrm{~N}$
$M_{r}=386.58$
Monoclinic
$P 2_{1} / n$
$a=7.4118$ (1) \AA
$b=16.7280(3) \AA$
$c=13.5168$ (1) A
$\beta=90.748(1)^{\circ}$
$V=1675.73(4) \AA^{3}$
$Z=4$
$D_{x}=1.532 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} not measured

Data collection

Siemens SMART platform diffractometer
ω scans
Absorption correction: empirical from ψ scans (SHELXTL5; Sheldrick, 1995)
$T_{\text {min }}=0.703, T_{\text {max }}=0.787$
11406 measured reflections

Mo $K \alpha$ radiation
$\lambda=0.71073 \AA$
Cell parameters from 8132 reflections
$\theta=2.0-27.5^{\circ}$
$\mu=1.261 \mathrm{~mm}^{-1}$
$T=173$ (2) K
Needle
$0.25 \times 0.19 \times 0.19 \mathrm{~mm}$
Dark blue

3840 independent reflections 3476 reflections with
$I>2 \sigma(I)$
$R_{\text {int }}=0.042$
$\theta_{\text {max }}=27.50^{\circ}$
$h=-9 \rightarrow 8$
$k=-13 \rightarrow 22$
$l=-18 \rightarrow 18$

Refinement

Refinement on F^{2}
$R(F)=0.030$
$w R\left(F^{2}\right)=0.081$
$S=1.07$
3822 reflections
197 parameters
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0354 P)^{2}\right.$
$+1.0062 P]$
where $P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=-0.01$
$\Delta \rho_{\text {max }}=0.40 \mathrm{e}^{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-0.28 \mathrm{e}^{-3}$
Extinction correction:
SHELXTL5 (Sheldrick, 1995)

Extinction coefficient: 0.0034 (6)

Scattering factors from International Tables for Crystallography (Vol. C)

Table 1. Selected geometric parameters $\left(\AA^{\circ},^{\circ}\right)$

$\mathrm{Mn}-\mathrm{Nl}$	$2.096(1)$	$\mathrm{Mn}-\mathrm{Cl} 2$	$2.2187(5)$
$\mathrm{Mn}-\mathrm{Nl2}$	$2.035(1)$	$\mathrm{Mn}-\mathrm{Cl} 3$	$2.3117(5)$
$\mathrm{Mn}-\mathrm{Cl1}$	$2.2587(5)$		
$\mathrm{Nl}-\mathrm{Mn}-\mathrm{N} 12$	$77.95(6)$	$\mathrm{Nl2--Mn}-\mathrm{Cl} 2$	$168.86(4)$
$\mathrm{Nl}-\mathrm{Mn}-\mathrm{Cl1}$	$137.16(4)$	$\mathrm{N} 12-\mathrm{Mn}-\mathrm{Cl} 3$	$91.65(4)$
$\mathrm{Nl}-\mathrm{Mn}-\mathrm{Cl} 2$	$92.63(4)$	$\mathrm{Cl}-\mathrm{Mn}-\mathrm{Cl} 2$	$92.65(2)$
$\mathrm{N} 1-\mathrm{Mn}-\mathrm{Cl} 3$	$110.55(4)$	$\mathrm{Cl1}-\mathrm{Mn}-\mathrm{Cl3}$	$110.85(2)$
$\mathrm{N} 12-\mathrm{Mn}-\mathrm{Cll}$	$90.36(4)$	$\mathrm{Cl} 2-\mathrm{Mn}-\mathrm{Cl} 3$	$97.28(2)$

A hemisphere of frames, 0.3° in ω, was collected. The first 50 frames were remeasured at the end of data collection to monitor instrument and crystal stability. Intensity decay was $<1 \% . \psi$-Scan empirical absorption corrections were applied based on the entire data set. Full data-collection details are in the archived CIF and are also reported elsewhere (Abboud et al., 1997). The H atoms were placed in idealized positions and were refined riding on their parent atoms. $\mathbf{C}-\mathrm{H}$ distances of 0.96 and $0.93 \AA$ were used for methyl and $s p^{2} \mathrm{C}$ atoms, respectively. H -atom displacement parameters were set at $1.2 U_{\mathrm{eq}}$ of the parent C atom or $1.5 U_{\mathrm{eq}}$ for methyl H atoms.

Data collection: SMART (Siemens, 1995). Cell refinement: SMART and SAINT (Siemens, 1995). Data reduction: SHELXTL5 (Sheldrick, 1995). Program(s) used to solve structure: SHELXTL5. Program(s) used to refine structure:

SHELXTL5. Molecular graphics: SHELXTL5. Software used to prepare material for publication: SHELXTL5.

KAA wishes to acknowledge the National Science Foundation and the University of Florida for funding of the purchase of the X-ray equipment.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: FG1372). Services for accessing these data are described at the back of the journal.

References

Abboud, K. A., Ortiz, C. G., Palenik, R. C. \& Palenik, G. J. (1997). Acta Cryst. C53, 1322-1323.
Ajiro, Y., Goto, T., Kikuchi, H., Sakakibara, T. \& Inami, T. (1989). Phys. Rev. Lett. 63, 1424-1427.
Arasasingham, R. D., Balch, A. L., Olmstead, M. M. \& Renner, M. W. (1987). Inorg. Chem. 26, 3562-3568.

Balch, A. L., Mazzanti, M., Noll, B. C. \& Olmstead, M. M. (1994). J. Am. Chem. Soc. 116, 9114-9122.

Day, V. W., Stults, B. R., Tasset, E. L., Day, R. O. \& Marianelli, R. S. (1974). J. Am. Chem. Soc. 96, 2650-2652.

Granroth, G. E., Meisel, M. W., Chaparala, M., Jolicoeur, Th., Ward, B. H. \& Talham, D. R. (1996). Phys. Rev. Lett. 77, 1616-1619.

Katsumata, K. (1995). J. Magn. Mater. pp. 140-141, 1595-1598.
Katsumata, K., Hori, H., Takeuchi, T., Date, M., Yamagishi, A. \& Renard, J. P. (1989). Phys. Rev. Lett. 63, 86-88.
Perlepes, S., Blackman, A., Huffman, J. \& Christou, G. (1991). Inorg. Chem. 30, 1665-1668.
Sheldrick, G. M. (1995). SHELXTL5. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Siemens (1995). SMART and SAINT. Data Collection and Processing Software for the SMART System. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Tulinsky, A. \& Chen, M. L. (1977). J. Am. Chem. Soc. 99, 3647-3651.

Acta Cryst. (1998). C54, 181-183

Tricarbonyl $\left(\eta^{5}\right.$-cyclopentadienyl)(trimethyl-phosphine- P)molybdenum(II) Tetrafluoroborate

James C. Fettinger, Heinz-Bernhard Kraatz and Rinaldo Poli
Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA. E-mail: jf96@umail.umd.edu

(Received 24 April 1997; accepted 26 September 1997)

Abstract

The title compound, $\left[\mathrm{Mo}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)\left(\mathrm{C}_{3} \mathrm{H}_{9} \mathrm{P}\right)(\mathrm{CO})_{3}\right] \mathrm{BF}_{4}$, forms by a ligand-redistribution reaction from $\left[\left(\eta^{5}-\right.\right.$ $\left.\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Mo}(\mathrm{CO})_{2}\left(\mathrm{PMe}_{3}\right) \mathrm{FBF}_{3}$], which is produced at low temperature by protonation of $\left[\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Mo}(\mathrm{CO})_{2}-\right.$

